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Impurity Dynamics in a One-Dimensional Chain 
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The behavior of an impurity spin in a one-dimensional chain is investigated 
using the Glauber model. Two different types of impurities are considered and 
exact expressions for the average spin of the impurity, given that the impurity 
was initially excited out of equilibrium, are found. The behavior of these models 
is discussed in detail and their relevance to other physical situations is consid- 
ered. 
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1. I N T R O D U C T I O N  

Professor Glauber  once apologized to students for having the "Ising dis- 
ease," that  is, a fascination with this very simple model  system. (1) This 
disease is caused chiefly by the prospect  of exact mathemat ical  solution of 
the models. Professor Glauber ' s  kinetic Ising model  is a prime example 
since analytic expressions can be found  for m a n y  quantities of interest. (2) 

In  this paper  we consider the dynamics  of an impuri ty spin in a 
one-dimensional  chain of spins. The dynamics  of this system is modeled by 
the Glauber  master  equation for single, uncorrelated spin-flips. The result- 
ing equations for the average spin can be reduced to a simple form and 
solved exactly. 

The main  question we address with this model  is: what  effect does the 
critical slowing down of a system near  a phase transition have on an 
impuri ty coupled to it? Previous studies of dynamic  Ising models with 
quenched impurities have focused on the behavior  of the system averaged 
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over the locations of a finite concentration of impurities. (3'4) Although the 
one-dimensional Ising model does not have a nonzero critical temperature, 
the correlation length of the pure system 

= 1 / [1  - t anh ( f l J ) ]  ~�89 2~ (1.1) 

can be made as large as desired by increasing the spin coupling constant J. 
The relaxation time for this system also increases as 

~- = 1 / [1  - t anh(2 /U)]  (1.2) 

so the system can be made as sluggish as desired as J increases. 
In addition to being a model for the dynamics of a spin system, the 

Glauber model has been employed in other contexts, for example in the 
dynamics of the helix-coil transition in a DNA molecule (5) and the effect of 
interactions between enzymes in a chain. (6) Our original motivation for 
studying this system was as a model for a chemical reaction occurring in a 
solvent near a critical point. Ising models have long been used in the study 
of liquid-gas and binary mixture phase transitions. However, only under 
very restricted circumstances will the Glauber model be an acceptable 
model of the dynamics, for example, of binary fluid phase separation. 
Normally, the fractions of the component species are conserved quantities. 
The Glauber, single spin-flip model does not conserve spin. The Glauber 
model will only be relevant in cases where the two component species can 
freely interconvert. Our model, therefore, may be used when a unimolecu- 
lar chemical reaction is occurring in a solvent that can itself interconvert 
between two chemically distinct species, and these two species are undergo- 
ing a phase separation. This rather unconventional phase transition has 
been discussed, thermodynamically, by Gitteman and Steinberg. (7) We will 
return to this application in the discussion, and focus on the results 
obtained from the mathematical model. 

The outline of this paper is as follows. In Section 2 we sketch the 
derivation of the Glauber model, with special attention paid to the modifi- 
cations required to treat the impurity. In Section 3, exact solutions are 
given for two different types of impurities. Section 4 contains a discussion 
of these expressions for intermediate and asymptotic times, and we close 
with a brief discussion in Section 5. 

2. FORMULATION OF THE MODEL 

The derivation, or motivation, of Glauber's master equation and the 
equation obeyed by the various moments has been discussed by many 
authors. (2'3'8~ Here we will briefly recapitulate only those aspects that are 
modified by the introduction of an impurity. We consider a chain of spins, 
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a~, each allowed only the values 0 = + 1. We then adopt a master equation 
for the rate of change of the probability P(o~ ,o  2 . . . .  , ON; t) for a given 
configuration of spins {%,  0 2 . . . .  , ON} at time t. We denote by wi(oi) the 
probability that the ith spin flips from o~ to - o i  while the remaining spins 
stay fixed. This probability will in general be function of all the spins. The 
master equation is 

d-ff- P(ol ,o 2 . . . .  ,ON;t)= - I E wj(oj) ]P(Ol . . . . .  ON;t ) 
dt j 

+ [ ~j w j ( -  o j )P(o l ,  . . . , - oj . . . . .  aN; t ) ]  

(2.1) 

The choice of w~(o~) is still arbitrary. The Glauber model consists of 
choosing the form 

wj(oj) = �89 - �89 + ys).+ loj+,)] (2.2) 

where we have generalized the expression to allow for different couplings 
(.{'s) between the sites. In this expression a~ is the spin-flip rate for the ith 
spin and in the absence of any coupling with its neighbors, a~ is the decay 
rate of the average of the ith spin. 

Following Glauber, we now choose the ~,'s so that the equilibrium 
distribution obeys Boltzmann statistics, 

P e q ( O l ,  . . . , - -  ~ . . . . .  O N )  

P e q ( O ' l  . . . . .  Oj . . . . .  ON) 

where 

e -/~[/[o~ . . . . .  -~ . . . . .  oN] 
e-fill[% . . . . .  ~ . . . . .  oN] 

(2.3) 

From this requirement it follows that 

w j ( o j )  _ e - e " (  . . . . . . .  - 9  . . . . .  o ~  

• ( -  ~-) e - e l l (  . . . . . . .  ~ . . . . . .  u) e/~)j ,~-,~+B~j+,%,~ 

1 - o j tanh( f l J j j_ ,a j_ ,  + flJjj+loj+,) 

-- 1 + ~ t a n h (  flJsj_,aj_ , + flJJj+,%+O (2.5) 

which implies that if wj(oj) has the form of Eq. (2.2) then 

Yjj-1 = tanh( flJjj- 1 + flJjj+ ,) - tanh( flJsJ-' + flJsy+ 1) (2.6) 

Y j j + l  = tanh( flJjj- l + flJsy+ I) + tanh(/~4j_ 1 - -  ~Jjj+ 1) (2.7) 

We will focus our attention on a single impurity, which we locate at 
the origin. We will consider the limit of a very large or infinite system. We 

N-1 
H(o~ . . . . .  ON) = -- ~ Ji,i+,aiai+l (2.4) 

i = 1  
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designate the unperturbed coupling constant as J and the impurity cou- 
pling constant as J ' .  This results in the following set of ~,'s: 

701  ~--- ~/0--1  = tanh(2BJ') (2.8) 

71o = ~'-,o = tanh[ /3(J  + J ' ) l  + tanh[ f l ( J  - J ' ) ]  (2.9) 

3',2 = ~ '- , -2 = tanh[ f l ( J  + J ' ) ]  - tanh[ /~(J  - J ' ) ]  (2.10) 

and for all others 

7;,;- 1 = Y;,; +1 = tanh(2~J)  (2.11) 

The structure of the transition rates is such that even though only two 
constants in the Hamiltonian are changed, five coupling constants in the 
master equation are changed. 

One pleasant feature of this choice of transition rates is that the 
equations for the average spin s; = (o;) are decoupled from the higher 
moments. The equations of motion for the average spin become 

d s i  1 
dl O~iSi "1- 0~i 2 [ ~li'i--tSi--1 "t- ~ii+lSi+|] (2.12) 

Equation (2.12) together with Eqs. (2.8)-(2.11) constitute the system of 
equations we wish to investigate. A similar equation can be derived for the 
spin-spin correlation function, although we will not consider it here. It 
should be noted that the presence of a magnetic field modifies the transi- 
tion rates and the average spin is then coupled to the spin-spin correlation 
function and the moments then generate a hierarchy of equations. Like- 
wise, a hierarchy of equations results when higher dimensional systems are 
considered. 

We consider two choices of parameters for the impurity model defined 
by Eq. (2.2). The first choice consists of equal coupling constants J but the 
spin flip rate a'  different for the impurity. The second choice consists of 
equal a's but J not equal to J ' .  

It is also necessary to specify the initial conditions. Here, we will 
consider a localized excitation at the impurity site, 

( s i )  = 6io at t = 0 (2.13) 

hence we are perturbing the impurity spin and observing its decay. 

3. SOLUTION OF THE EQUATIONS 

There are standard techniques which may be used to solve almost any 
single impurity problem. (9) Given our initial condition we may regard our 
task as calculating an element of the Green's function for the system. The 
natural way to solve for this element is to employ the standard, pure, 
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Glauber model as the reference system and treat the impurity as a perturba- 
tion. It is convenient to Laplace transform Eq. (2.12) with respect to time, 
resulting in an infinite set of algebraic equations. In Laplace transform 
space, the Green's function for the pure system, Eq. (2.12) with all ,/'s given 
by Eq. (2.11) and initial condition (Sk) = 6kj at t = 0, is 

( )" a o ( ~ )  = ! ~ r  
[ (g  "F" 0/) 2 -- R2]/2] ' /2 (Z 4" 0~) -Jr" [ (g  -b a) 2 - y2a2] '/2 

(3.1) 
where i and j label sites on the chain. (9) We now need to consider the 
specific perturbation. 

Case A 

For the case that only the impurity spin-flip rate differs from that of 
the pure system, the perturbation has the simple form 

(~V/j = (~jo(Off - o / ) [ ( ' y /2 ) (~ j l - - I -  (~j- 1) - (~jo] (3.2) 

and we may write Gig(z) as 

%(z) = G~ + E G?(~) av~,,%o(z) 
k,l 

+ Z a , ~ 1 7 6 1 7 6  + ' "  (3 .3 )  
k,l,m,n 

This can be exactly resummed to yield 

G?o(Z)(~'-~)[(~/2)(G~ + e~ Go+ 
%(z)= G~(z) + (3.4) 

1 - ( a ' -  a ) [ (y /2) (G~ + G~ - Go~ 

and the element we are interested in is simply 

G~ 
Goo(t) = 

1 - ( ~  - ~ ' ) [ ( r / 2 ) ( C ~  + a ~ ,o) - G~ 
1 

(o , / . ){  [(z + .)2+ ~=.2],,2} + (1 -  ( . , /o))z 

This result is exact. In the next section we discuss this result. 

(3.5) 

(3.6) 

Case B 

When the coupling constant J '  is not equal to J the analysis becomes 
more difficult. The same general scheme can be used except now the 
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perturbation is 

~Vt~ / ~ oL( ~ )(~i_ l~j_2-~ ,- ~i+ l(~j+2)--~ 0~( ~ )(~i_ [~jo-~-~i+ [~jo) 

where 

and 

~'0 = tanh(2f iJ ' )  

"/1 = tanh[  f l ( J  + J ' ) ]  - tanh[  f i ( J  - J ' ) ]  

~'2 = tanh[ f i ( J  + J ' ) ]  + tanh[ B ( J  - J ' ) ]  

( 3 . 8 )  

7 = tanh(2f l J )  

To sum the scattering series directly in real space it would be necessary to 
invert a 5 x 5 matrix. A slightly easier procedure is to consider the Fourier 
transform 

G ( k , k ' , z )  = ~ eikneik'mGmn(Z) (3.9) 
n~m 

which has the following series representation: 

G(k,k',z) = G~ + ( (G~176 dk2 
d J  

where 

+ ffffc~176176 
• dk  I d k 2 d k 3 d k  4 + �9 �9 �9 (3.10) 

8 V ( k , k ' )  = a ( 7  , - 7 ) c o s ( k ) +  a ( y  0 - y)cos(k')  

+ a ( y  2 - 7 ) [ c o s ( k ) c o s ( 2 k ' )  - sin(k)sin(2k')]  (3.11) 

In order to sum (3.10) we write i~V(k , k ' )  as 

4 

a V ( k , k ' )  = ~ f ~ ( k ) g n ( k ' )  =- f . g  

g l = l  

g2 = cos(k')  

g3 = cos(2k~) 

g 4  = sin(2k') 

where 

fi = a ( 7 , -  7)cos(k) 

A = ~(~o-  ~) 
A = ~(~'~- v)cos(k) 

f 4  = - a O ' 2  - y ) s i n ( k )  

(3.12) 

(3.13) 
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and notice that 

f fSV(k'k2)G~ 
4 4 

= E 2 (:~(kl)[ff.~(k2)G~ 
r/=l /*=1 L L , , ' . "  J )  

(3.14) 
We define a 4 x 4 matrix 

A..(z)=f f g.(k2)G~ ( 3 . 1 5 )  

The elements of this matrix will be combinations of G~ Using Eq. (3.15), 
Eq. (3. I 0) becomes 

G(~,~',.) = G~ + f f G~ + A + A. A + . . .  1 

�9 g(k2)C~ ', z) dk, dk2 

= + f f a ~  A3-' .  g(<) 

X G~ ak, dk 2 (3.16) 

The matrix inversion in Eq. (3.16) can be performed analytically. The 
inverse Fourier transform of Eq. (3.16) can also be performed easily, since 
all Fourier integrals can be related to G~ After a considerable amount of 
algebra, the final expression is found to be 

(Z "J" 0/)(2~ -- r2)  + ")/2[( Z ''1- Og) 2 -  r20g2] 1/2 
C;0o(Z) = 

(3.17) 

Equations (3.6) and (3.17) are the principal results of the paper. We 
stress that these are exact results. 

One result which can be seen immediately from Eq. (3.17) and (3.8) is 
that changing the sign of J '  does not affect Goo(Z ). This implies that an 
antiferromagnetic impurity (J > 0, J '  < 0) will relax in exactly the same 
manner as ferromagnetic impurity (J > 0, J '  > 0). 

4. RESULTS 

We are unable to analytically invert the Laplace tranforms in Eqs. 
(3.6) and (3.17); in order to investigate the temporal behavior we have 
numerically inverted the Laplace transform using Stehfest's method, (1~ to 
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study short and intermediate times, and analytically studied the asymptotic 
time behavior. 

Case  A - - N u m e r i c a l  Results 

Figure 1 shows Goo(t ) [Eq. (3.6)] for various values of ~', where we 
have scaled the time by a. All curves are for the case/3J = 1. The curve 
a '  = 1.0 corresponds to the pure system. Cursory inspection of these curves 
shows that the major effect of changing the relaxation time is in the initial 
behavior, where an impurity with a rapid relaxation time (say a = 5) decays 
further before the sluggish bath is able to respond and slow it down. For 
a '  << a the curves are flatter, indicating a slower relaxation time. 

1.0 

a '  = .2 

a' = .5 

GOO (t).l 

a'= 1.0 

a'=2.0 

a' : 5.0 

.OI I 2 3 4 5 6 7 
at 

Fig. 1. The  decay  of the impur i ty  spin for var ious  values  of the impur i ty  spin flip rate a ' .  The  
dashed  line is decaying  at  the pure  sys tem relaxat ion t ime T = a - I(1 - 3 ' )-  1, for f l J  = 1. 

Asymptot ic  Analysis 

The asymptotic time behavior of a function can be related to the 
small-z behavior of its Laplace transform. In general, expressions (3.6) and 
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(3.17) can have poles and will have branch cuts due to square root. The 
branch cut can be taken from z = - a ( 1  + y) to z = - a ( 1 -  7). The 
behavior of the function near this cut will dominate asymptotically if there 
are no poles, or if there are no poles at z > - ~(1 - 7). The expression for 
the pure Glauber model, Eq. (3.1), has no poles and the branch determines 
its behavior at long time 

(2~rTat),/z (4.1) 

This defines a relaxation time 

~" -- a - l (  1 - V)- '  (4.2) 

which goes to infinity as J goes to infinity and y goes to 1. It is important to 
note, however, that the system continues to decay due to the t -~/2 term. 
This can be seen clearly in Fig. 1. For flJ -- 1, the pure systems relaxation 
time is ~- = 109. The dashed line on Fig. 1 is f(1) = e - t /"  and is considera- 
bly flatter than f lJ = 1 (pure system) curve for the times shown on the 
graph. 

Finding the poles of Equation (3.6) reduces to solving a quadratic 
equation. Care must be taken with the phase of the square root. We find 
that for a '  > a the expression has no poles and the long time behavior is 
essentially the same as the pure system. The asymptotic relaxation time will 
be Eq. (4.2). For a '  < a(1 - y), however, we find a pole appearing at a 
point on the negative real axis greater than z = -c~(1 - y) and this pole 
determines the asymptotic behavior. This is shown in Fig. 2, where we have 
plotted the asymptotic relaxation time against a'. For a'<< a(1 - y)  the 
relaxation time is 

~" = a ' - ' ( 1  - y2) - ' / 2  (4.3) 

For  large J, Eqs. (1.1) and (4.3) imply that 

13g t - 1  

T ~'- ~ (4.4) (f 

The relaxation time, as we decrease a', becomes proportional to the 
correlation length and not the square of the correlation length squared as in 
the pure system. It is important to keep in mind that expression (4.4) is 
valid for fixed values of flJ for asymptotically small values of a'. For fixed 
c~' and flJ increasing, 7 will approach 1 and eventually c~' will be greater 
than a ( 1 -  y); ~- will then approach the pure system result and vanish 
proportional to the square of correlation length. This agrees with the 
general analysis of Schneider and Stoll (4~ for the behavior of this form of 
the master equation with a small concentration of impurities. We will 
discuss this point further in Section 5. 
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Fig. 2. 

9 i 

8 

7 

6 

log(at} 5 
4 

3 

2 

'L 
0 

J = 2 . ~  
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The asymptotic decay rate for the impurity spin as a function of the impurity spin flip 
rate c~'. 

I0 

Goo (t).I 

I - - i  I I ~ - -  

J= I d '= 2 .5  

J=2.5 d'= 2.5 

d=l O'=l 

NN~2.5 J'= I 
d'=C 

�9 01 t I l I __L__L__L_~--L---:--~ 
I 2 3 4 5 6 7 

at  

Fig. 3. The decay of the impurity spin for various values of the nearest-neighbor interactions. 
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Case B- -Numer ica l  Results 

Sample calculations for Goo(t ) for various values of flJ and /3J' are 
presented in Fig. 3 which reveal several interesting aspects of this system. 
Even though the behavior of the pure system is not greatly changed 
between f iJ  = 1 and jSJ = 2.5, we can generate two distinct behaviors when 
f iJ  = 1 and f iJ '  = 2.5 and when f lJ  = 2.5 and/3J '  = 1. 

For the intermediate times presented on this graph, the relaxation of 
an impurity J '  > J is slower than even a pure chain with coupling J ' .  To 
understand this behavior we need to examine the behavior of y, Y0, 71, and 
Y2 [Eqs. (2.8)-(2.11)]. For J '  > J the impurity becomes sluggish because the 
impurity and its nearest neighbors become a block of three spins weakly 
coupled to the rest of the chain. In the limit J'--+ oo, J finite, these three 
spins become disconnected from the rest of the chain, and 

I - 2 ~ ,  ( 4 . 5 )  Goo( t ) = �89 + ~e 

For J < J '  the impurity will relax rapidly until the sluggish bath can 
respond. As J increases, however, it takes longer and longer for the bath to 
respond and the impurity behaves more like a free spin. Again examining 
the 3', 70, Yi, and "/2 we see that the impurity becomes more weakly coupled 
to the rest of the chain, and in the limit J ~  c~, the impurity becomes a free 
spin, decaying as 

Goo(t ) -- e -at  (4.6) 

Asymptotic Analysis 

As with case A, we discuss the asymptotic time behavior of expression 
(3.17) by studying its poles and branch cuts. Again finding the possible 
poles involves solving a quadratic equation. We find that for J < J ' ,  the 
long time behavior is the same as the pure system. For J '  > J,  there is a 
different, slower relaxation time. These results are shown in Fig. 4, where 
the relaxation time is plotted againt f lJ '  for various values of flJ. In the 
limit that f lJ '  >> flJ, the relaxation time approaches 

r = a - le  -2/v' (4.7) 

as clearly seen in Fig. 4. This result is the decay rate for an isolated three 
spin block with coupling constant J ' .  We see that if J ' >  J and the 
temperature of the system is lowered, fi will increase and the impurity will 
eventually have the relaxation time given in Eq. (4.7). This result is 
independent of J and is hence not directly related to the correlation length 
of the system. 



92 Calef 

2O 
18 
16 
14 
12 

log ((rr)I0 
8 

6 

4 

2 
% 

I ~ ~ - - - - g -  I I I I - -  

J=5.5 ~ i  
J - , 2 y  

J=l.5 

1 I 1 I I L I I _ _  
I 2 .3 4 5 6 7 8 9 

d' 

Fig. 4. The asymptotic decay rate for the impurity spin as a function of the impurity spin's 
nearest-neighbor coupling. 

5. D ISCUSSION 

The general conclusion from studying this model is that as the bulk 
system is critically slowed a separation of time scales occurs and the bulk's 
influence on the impurity correspondingly decreases. This simple model 
shows a variety of behaviors, depending on the nature of the impurity. The 
case of differing coupling constants demonstrates clearly the local nature of 
the decay. If the impurity is less strongly coupled (J'  < J), driving the bulk 
toward "freezing" allows the spin to relax unhindered by the bulk for 
longer periods of time. If the impurity is more strongly coupled (J'  > J),  a 
small block of spins near it becomes independent of bulk as the bulk slows 
down. There is also a separation of length scales occurring that frees the 
local impurity. 

Certain peculiarities must be expected from the one-dimensional char- 
acter of the model. In relation to this, an additional comment on the work 
of Schneider and Stoll (4) is in order. Their results are basically for higher- 
dimensional systems. They assume that the impurity spin flipping is an 
activated process 

a ' =  ow -BAE (5.1) 

where a is the temperature-independent spin-flip rate for the bulk. They 
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also assume a nonzero critical temperature, which implies that a '  is also 
nonzero at the critical point. If we were to assume this form for a' in the 
one-dimensional model, the asymptotic time behavior of the system as 
T---> 0 will depend on /XE. Specifically, by analyzing the poles of Eq. (3.6) 
we find that if AE < 2J, the system will decay asymptotically in the same 
manner as the case of fixed a' and flJ increasing, and ~- cc ~2. If E > 2J, the 
system behaves as the a >> a', fixed/~J case, and r oc ~. If a '  did not vanish 
at the critical temperature, this behavior would not occur. 

The Glauber model has been used to model many different systems 
and in many of these systems impurities can be important. For example, in 
modeling cooperative effects in enzymatic reactions, it is not unreasonable 
to model a single different enzyme as an impurity. Unfortunately, in many 
cases the resulting spin system must be in an external field, a complication 
that does not allow any of the Glauber models to be solved exactly. 

In closing, we return to our original interest, chemical process in 
"critical" situations. In the introduction we discussed the type of critical 
behavior for which this would be a relevant model for the dynamics. In 
addition, the absence of an external magnetic field in our calculations 
means the model can only be taken as an analogy to an isothermic reaction 
and to a solvent with no chemical potential difference between its two 
states. The interaction energies between the reactant and solvent are also 
restricted. To avoid introducing an external field, it is necessary that the 
energy of one state of the reactant interacting with one state of a neighbor- 
ing solvent molecule be equal to the energy of the other state of the 
reactant interacting with the other state of the solvent. Although the direct 
analogy is to an extremely limited type of chemical reaction and solvent 
system, within these limitations, the conclusion drawn for our model is that 
the bulk solvent has less effect on the rate of the reaction as the system is 
critically slowed. 
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